Measuring, in solution, multiple-fluorophore labeling by combining fluorescence correlation spectroscopy and photobleaching.
نویسندگان
چکیده
Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process but also to quantify interactions, for instance within molecular complexes. We combined fluorescence correlation spectroscopy (FCS) and photobleaching experiments to measure the effective number of molecules and the molecular brightness as a function of the total fluorescence count rate on solutions of cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here, photobleaching is used as a control parameter to vary the experimental outputs (brightness and number of molecules). Assuming a Poissonian distribution of the number of fluorescent labels per cDNA, the FCS-photobleaching data could be easily fit to yield the mean number of fluorescent labels per cDNA strand (approximately = 2). This number could not be determined solely on the basis of the cDNA brightness, because of both the statistical distribution of the number of fluorescent labels and their unknown brightness when incorporated in cDNA. The statistical distribution of the number of fluorophores labeling cDNA was confirmed by analyzing the photon count distribution (with the cumulant method), which showed clearly that the brightness of cDNA strands varies from one molecule to the other. We also performed complementary continuous photobleaching experiments and found that the photobleaching decay rate of Alexa Fluor 647 in the excited state decreases by about 30% when incorporated into cDNA, while its nonradiative decay rate is increased such that the brightness of individual Alexa labels is decreased by 25% compared to free Alexa dyes.
منابع مشابه
Development and characterization of a brain tumor mimicking fluorescence phantom
Fluorescence guidance using 5-aminolevulinic acid (5-ALA) for brain tumor resection is a recent technique applied to the highly malignant brain tumors. Five-ALA accumulates as protoporphyrin IX fluorophore in the tumor cells in different concentrations depending on the tumor environment and cell properties. Our group has developed a fluorescence spectroscopy system used with a hand-held probe i...
متن کاملAutomated method for quantifying fluorophore colocalization in fluorescence double-labeling experiments.
Fluorescence double-labeling is an important method for investigating associations of molecules (1). For example, evidence of co-association of proteins often includes demonstrating that they are colocalized in the same compartment of the cell. Furthermore, colocalization studies are not limited to proteins but also include measuring the colocalization of separate lipid species (8), lipids with...
متن کاملPhospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy.
We measured in-gel fluorescence anisotropy of phospholamban (PLB) labeled with the biarsenical fluorophore FlAsH at three different sites on the cytoplasmic domain. The 6 kDa monomer bands of FlAsH-tetracysPLB showed high anisotropy (r = 0.29), reflecting null homotransfer and low mobility (S = 0.85) on the nanosecond time scale of the FlAsH fluorescence lifetime. 30 kDa bands (pentameric PLB) ...
متن کاملSpontaneous recovery of fluorescence by photobleached surface-adsorbed proteins.
Fluorescence photobleaching of a carboxyfluorescein-labeled protein (erythrocyte cytoskeletal protein 4.1) immobilized on bare glass is found to be spontaneously reversible, provided that the sample is deoxygenated. After a short (hundredths of seconds) photobleaching laser flash, the subsequent fluorescence excited by a dim probe beam partly recovers on a long (tenths of second) time scale, ev...
متن کاملSequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore
Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 8 شماره
صفحات -
تاریخ انتشار 2010